
BIRZEIT UNIVERSITY

Faculty of Engineering and Technology
Master of Software Engineering

Thesis

Automatic Classifying of Requirements-relevant contents from App Reviews in the

Arabic Language

Author: Alaa Isaac

Supervisor: Dr. Abualsoud Hanani

March 12, 2022

https://birzeit.edu

i

BIRZEIT UNIVERSITY

Faculty of Engineering and Technology
Master of Software Engineering

Automatic Classifying of Requirements-relevant contents from App Reviews in the

Arabic Language

المحمولة الهواتف لتطبيقات العربية المراجعات من البرمجية بالمتطلبات المتعلقة للبينات التلقائي التصنيف

Committee:

Dr. Abualsoud Hanani: (Chairman of the Committee)

Dr. Yousef Hassouneh: (Member)

Dr. Ahmad S. Afaneh: (Member)

A thesis submitted in fulfilment of the requirements

for the degree of Maters in Software Engineering

March 12, 2022

https://birzeit.edu

ii

Automatic Classifying of Requirements-relevant contents from App Reviews in the

Arabic Language

Thesis
Author : Alaa Isaac

Approved by the thesis committee:

Dr. Abualsoud Hanani: (Chairman of the Committee)

Dr. Yousef Hassouneh: (Member)

Dr. Ahmad S. Afaneh: (Member)

Date of Defense:

iii

Declaration of Authorship

I, Alaa Isaac, declare that this thesis titled, “ Automatic Classifying of Requirements-

relevant contents from App Reviews in the Arabic Language” and the work presented

in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master’s degree

at Birzeit University.

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

• Where I have consulted the published work of others, this is always clearly at-

tributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

iv

Abstract

Themarket formobile application development is continuing to thrive, with billions

of users and millions of apps. Collecting software requirements for mobile apps has to

cope with this trend, so as for the software to compete in this crowded scene. Therefore,

efforts to analyze and mine mobile app reviews for requirements have shown a similar

trend of increasing.

Among the billions ofmobile users, there are hundreds ofmillions of Arabic-speaking

users. According to our knowledge, this study would be one of the first studies in the

field of mining Mobile app reviews for the assistance of Requirements Engineering, to

direct its focus on Arabic reviews.

The relevant academic literature on the topics of mining Arabic text and App re-

views mining has been studied. Besides the lack of studies on mining Arabic App re-

views, the application of the machine learning techniques of deep learning on Arabic

text deserves further research and enhancement, especially for improving the handling

of the various dialects of Arabic.

A dataset of 7604 Arabic app reviews has been constructed and manually annotated

by six experts. Each categorization aims at assisting one or more processes of software

requirements engineering. Several deep learning approaches and configurations were

tested in the experiments on the dataset. And finally, the results were utilized, in com-

parison with similar systems, in answering the research questions.

Various configurations of deep neural networks, namely, CNN, LSTM, and BLSTM,

v

were used to classify the app reviews into the considered categories of the software re-

quirement from the Arabic reviews. Furthermore, two word embeddings were utilized,

on a pre-trained fasttext word vector, and another Word2Vec word vector, produced by

this study.

The sentimental analysis results show that the LSTM classifier with the fasttext

word embeddings gives the best F1-score, 79.17%. However, the BLSTM classifier with

the fastText embeddings outperforms the other classifiers, with F1-score of 69.83%,

when used for identifying the sub-categories of the user perspective main category.

The F1-score of classifying the sub-categories of the intention and topics with the

LSTM and using fastText embeddings is 82.68% and 85,02%, respectively. These results

outperform the other configurations of the classifiers and word embeddings.

vi

ملخص
الملايين و المستخدمين من المليارات إلى يصل مستمر، نمو في المحمول الهواتف تطبيقات سوق أن الملاحظ من
تستطيع لـكي التوجه، هذا مع التماشي تتطلب البرمجية المتطلبات جمع عملية فإن أخرى، جهة من التطبيقات. من

المحمولة. الهواتف تطبيقات مراجعات في والتنقيب التحليل عمليات تنامت فقد لذا، منافسة. تبقى أن
بالعربية. المتحدثين المستخدمين من الملايين مئات هناك الذكية، للهواتف المستخدمين مليارات أصل من
المراجعات عن والتنقيب التحليل بمجالي المختصة الدراسات أوائل من تعد الدراسة هذه فإن الكاتب، علم حسب

البرمجية. المتطلبات هندسة مجال في يعها تطو لأجل المحمولة، الهواتف لتطبيقات العربية
العربية، النصوص في التنقيب مجال في المنشورة الأكاديمية المؤلفات دراسة على التركيز تم الدراسة، هذا في
تقنيات خلال من العربية البيانات عن التنقيب دراسة لأن البرمجية. المتطلبات على التنقيب لمؤلفات بالإضافة
تنوع أثر مع للتعامل خصوصا التمحيص، من مزيد إلى يحتاج آلة، تعلم أساليب من يعتبر والذي العميق، التعلم

العربية. اللهجات
قبل من تصنيفات عدة حسب تصنيفها ثم ومن المحمولة، الهواتف لتطبيقات عربية مراجعة ٧٦٠٤ تجميع تم
تجارب عدة اجراء تم البرمجية. المتطلبات هندسة من أكثر أو عملية دعم استهدف تصنيف كل متخصصين. ست
وتلاه العميق. التعلم وإعدادات تقنيات من عدد باستخدام البيانات، مجموعة على المطروح النظام لتدريب تهدف

البحث. اسئلة لإجابة مشابهة أنظمة مع ومقارنتها وتحليلها النتائج استخراج
تصنيف أجل من CNN, LSTM, BLSTM بالتحديد العميق، التعلم وتقنيات إعدادات من عدد استخدام تم
بهندسة والخاصة السابقة، الدراسات على المعتمدة التصنيفات من لعدد المحمولة الهواتف تطبيقات مراجعات
. Word2Vec و fasttext بالتحديد الكلمة، متجه لاستنباط تقنيتين استخدام تم لذلك تبعا البرمجية. المتطلبات
، Word2Vec حالة في أما العربية. اللغة على الشركة نفس قبل من مدرب نموذج تفعيل تم fasttext حالة في

المستخدمين. مراجعات من كبير عدد على الباحث قبل من نموذج تدريب تم فقد
حققت والتي F١ تقييم حسب كفاءة نسبة أعلى fasttext الكلمة لمتجه بالإضافة LSTM تقنية استخدام حقق
النية تصنيفي حسب F١ تقييم حسب كفاءة نسبة أعلى الذكر السابقتي التقنيتين استخدام حقق كما .%٧٩,١٧

vii

لمتجه بالإضافة BLSM تقنية بتحقيق المقاربة وكانت الترتيب. على %٨٥,٠٢ و %٨٢,٦٨ بالتحديد والموضوع،
منظور حسب المراجعات تصنيف في ،%٦٩,٨٣ بالتحديد F١، تقييم حسب كفاءة نسبة أعلى fasttext الكلمة
في الكلمة ومتجهات العميق التعلم تقنيات من الباقية التوافيق نتائج مع بالمقارنة كانت النتائج هذه بجمع المستخدم.

تصنيف. كل حالة

viii

List of Abbreviations

LSTM Long Short-Term Memory

CNN Convolutional Neural Networks

BLSTM Bidirectional Long Short-Term Memory

TP True Positive

FP True Negative

FN False Negative

TN False Positive

MSA Modern Standard Arabic

CSV Comma-Separated Values

TF-IDF Term Frequency-Inverse Document Frequency

CBOW Continuous Bag Of Words Model

QA Quality Assurance

ix

Contents

Abstract iv

Abstract (in Arabic) vi

List of Abbreviations viii

List of Figures xiii

List of Tables xiv

Acknowledgements xv

1 Introduction 1

1.1 Overview and motivation . 1

1.2 Research objectives . 3

1.3 Research questions . 4

1.3.1 Contribution . 4

1.4 Structure of the thesis . 5

2 Background 7

2.1 Software requirements engineering . 7

2.2 Crowd-based requirements engineering 8

2.3 User feedback and automatic text classification 8

x

2.3.1 Sentimental analysis . 10

2.4 Text classification . 11

2.5 Arabic text classification . 11

2.6 Artificial neural networks . 12

2.6.1 Deep learning . 12

2.6.2 Performance metrics . 12

Precision . 13

Recall . 14

Accuracy . 14

F1 score . 14

3 Literature Review 15

3.1 Mining app store reviews . 15

3.2 Automatic text analysis . 16

3.2.1 Classification of App reviews 17

3.3 Arabic sentiment analysis . 18

3.4 Highlight the gap of knowledge . 21

4 Research Methodology 22

4.1 Proposed system overview . 22

4.2 Dataset . 23

4.2.1 Data Collection . 23

4.2.2 Classification taxonomy . 26

4.3 System description . 27

4.3.1 Data preprocessing . 29

4.4 Feature extraction . 31

4.4.1 Deep learning classification models 31

Convolution Neural Networks (CNN): 32

xi

Long short-term memory (LSTM) 33

Bidirectional Long Short-Term Memory (BLSTM) 33

4.5 Evaluation criteria . 34

5 Experimental Results and Evaluation 35

5.1 Manual annotation analysis (RQ1) . 35

5.2 Experimental setup . 40

5.2.1 Word embeddings . 41

Word2Vec . 42

Fasttext . 43

5.2.2 Deep learning classifiers . 44

LSTM . 44

BLSTM . 45

CNN . 46

5.2.3 Model performance metrics . 47

5.3 Experiments . 47

5.3.1 Experiments set 1: classifications reviews by intention classes . 47

5.3.2 Experiments set 2: classifying reviews by sentiment classes . . 48

5.3.3 Experiments set 3: classifying reviews by topic classes 49

5.3.4 Experiments set 4: classifying reviews by user perspective classes 49

5.4 Discussion (RQ2) & (RQ3) . 50

5.5 Threats to Validity . 53

5.5.1 Threats to internal validity . 53

5.5.2 Threats to external validity . 54

5.5.3 Threats to construct validity . 54

6 Conclusion and Future Work 55

6.1 Conclusion . 55

xii

6.2 Future work . 56

xiii

List of Figures

2.1 Google Play review example . 9

4.1 Representation of sample of app reviews 25

4.2 Representation of sample of app details 25

4.3 Proposed system design in a simple mobile app release life-cycle 29

4.4 Normalizing repetition of letters . 31

4.5 Convolutional neural network architecture, source: [62] 32

4.6 Long short-term memory architecture, source: [8] 33

5.1 Manual classification Application . 36

5.2 Manual Annotation Results of Category Intention 38

5.3 Manual Annotation Results of Category Sentiment 39

5.4 Manual Annotation Results of Category Topic 39

5.5 Manual annotation results of category user perspective 40

5.6 Visualizing a snapshot of Word Vector around the Word H̱̱ll(error) . . 43

xiv

List of Tables

2.1 Binary classification confusion matrix 13

5.1 Sample of manually annotated review 38

5.2 System performance results of intention classification 48

5.3 System performance results of sentiment classification 48

5.4 System performance results of topic classification 49

5.5 System performance results of user perspective classification 50

5.6 Example of how to interpret reviews based on taxonomy values in the

context of Requirements Engineering 51

xv

Acknowledgements

First and foremost, I would like to express my utmost appreciation to my supervisor,

Dr. Abualsoud Hanani, for his dedication and support. His immense knowledge and

plentiful experience have encouragedme in all the stages of the research project, and his

insightful comments, suggestion, and guidance have been an inspiration in overcoming

many difficulties during the research journey.

I want also to thank the faculty members at Birzeit University for their continued

support and guidance.

Furthermore, I want to thank my colleagues at Zeva International, who were keen

to support my research.

Last but not least, I would like to express my gratitude to my family for their en-

couragement, patience, and never-ending support.

1

Chapter 1

Introduction

1.1 Overview and motivation

As the number of mobile apps offered on common app stores exceeds millions[14],

there is drastic attention drawn on optimizing apps, in order to compete in this highly

congested market. Types of both paid and free apps offered on popular app stores

haven’t been this diverse. All the business challenges on such market competitors

are reflected in the ability of the software development processes to offer dynamics

to achieve maximum user satisfaction, in addition to increasingly attract new users.

Thus, arises the importance of user feedback is an essential part of the mobile app de-

velopment process[61].

Mobile app stores offer the tools to let users of apps rate and review them con-

tinuously. Additionally, the apps themselves usually encourage users to review and

provide feedback on the apps, especially in correlation with new releases or services.

Prior studies concluded that a good ratio of such reviews can be precious to software

development and maintenance, including bugs, suggested features, and suggested up-

dates to existing features. Therefore, collecting and analyzing app reviews could be

2

an essential contributor to user feedback as an activity of the software development

life-cycle.

For an app with a limited number of users, reviews can be inspected manually.

However, for an app with tens of thousands of daily reviews, written in dozens of lan-

guages, manual inspection seizes to be an option. Therefore, machine learning tech-

niques were applied to textual and non-textual data to try to classify and prioritize

user reviews for various uses. Classifying reviews can help detect reviews with credi-

ble value for software development uses.

A large chunk of app reviews contains no informative data on how and why users

are satisfied or dissatisfied with apps. They may contain vague praise of the app or

a simple statement of dissatisfaction. Other reviews are completely silent on users’

satisfaction or their lack of. Ratings typically provided in reviews could mismatch the

textual content of the review itself. Therefore, classifying reviews stands as essential

in extracting data from reviews.

There is a growing interest in applying sentiment analysis techniques and classifi-

cation of Arabic texts. Several approaches have been introduced to face the challenges

of classifying Arabic-based textual content based on linguistic features, machine learn-

ing, or both. However, there is yet an attempt to apply classification techniques to

analyze Arabic app reviews for software requirements engineering purposes[55].

This thesis proposes to fill this gap, by evaluating the state-of-the-art features ex-

traction and classification approaches that were previously applied in sentiment analy-

sis, on Arabic mobile app reviews, taking into consideration the challenges of analyzing

multi-dialect unstructured Arabic text.

In order to assist requirement engineering processes, the proposed framework ap-

plies deep learning classification models on the Arabic textual data of mobile app re-

views. In that, we reviewed different taxonomies that have been applied in related and

previous studies and choose the best to fit the goals of our study.

3

As the main goal of this thesis is to focus on Arabic app reviews, we explore the

challenges that face applyingmachine learning techniques to the Arabic text, especially

when it comes to preprocessing, feature extraction, and classification model construc-

tion phases. Taking into consideration the noisy multi-dialect form of the data.

As discussed in the literature[54], classifying user feedback by sentiment, intention,

user experience, and topic can assist in achieving software requirements engineering

goals. For instance, they can assist in eliciting software requirements, measure prod-

uct acceptance, requirement prioritization, identify software bugs, suggest software

enhancements, and clarify ambiguous software requirements.

We propose a framework for the automatic classification of Arabic app reviews into

different categorizations that reflect their suggested uses in software requirements pro-

cesses. Additionally, we propose a methodology for testing and evaluating our frame-

work and the various proposed models of classification.

Furthermore, the study highlights the method used for data collection, preprocess-

ing, feature extraction of mobile app reviews, in our case, from the Google play store.

1.2 Research objectives

The main aim of this thesis is to propose and implement a framework to enhance ana-

lyzing mobile app reviews, written in Arabic, for requirements elicitation. A prototype

implementation of the proposed framework has been implemented, and proved its fea-

sibility, to serve as the cornerstone of further research. In addition, we aim to collect a

sufficient number of mobile app reviews, in the Arabic language, of mobile apps from

different domains. The collected reviews need to be prepared and annotated. The an-

notation process is done manually by reading each review and assigning it to a specific

category of the software requirements. The details of the annotation process and the

4

considered categories of the software requirements are presented in the methodology

chapter.

The state-of-the-art techniques in natural language processing and machine learn-

ing, particularly deep neural networks, are customized and investigated for the task of

classifying requirement-relevant content from the user reviews written in the Arabic

language.

1.3 Research questions

In this thesis, we are trying to tackle the following three main research questions:

• RQ1: To what degree do Arabic mobile app reviews contain useful information

for software requirements engineering purposes?

• RQ2: Which deep learning architecture can better serve as a classification model

for identifying and analyzing requirement-relevant information from the Arabic

user feedback?

• RQ3: How accurate the state-of-the-art word embeddings in Arabic, such as

word2vec and fastText, can be used for classifying requirement-relevant contents

from the user feedback?

1.3.1 Contribution

The major contributions of this thesis can be summarized in the following points:

• Around 7604 Arabic app reviews were extracted from different types of mobile

applications from different domains. The collected reviews are manually anno-

tated by the thesis author and other experts in software development. The anno-

tation follows the user feedback classification taxonomies described in Santos et

al.[54].

5

• Two of the state-of-the-art word embeddings techniques, namely word2vec and

fastText, were applied for the task of identifying requirement-relevant contents

from the app reviews written in the Arabic language. In the case of word2vec,

we generated a pre-trained word vector based on the full collected Arabic app

reviews, namely 13.5 million reviews.

• Three variants of the deep neural networks, namely CNN, LSTM, and BLSTM,

were customized and applied to classify the Arabic app reviews.

• The results of this research including the manual annotation suggest that Arabic

Mobile App reviews do contain data that is relevant to Software Requirements

engineering. Furthermore, the results of the experiments suggest that the pro-

posed automatic classification solution, including the deep learning techniques

applied, can be applied to the problem of Arabic Mobile App reviews, with good

accuracy.

1.4 Structure of the thesis

The introduction has provided an overview of this proposal, detailed the research ques-

tions, touched on the proposed approach, and has suggested the contribution of the

proposed solution.

Chapter 2 overviews key concepts that are essential to understanding the rest of

the study.

In Chapter 3, we discuss the background of how analyzing Mobile app reviews can

support different software development activities. Additionally, we discuss the relevant

literature and state of the art state-of-theour topic of interest.

Chapter 4 outlines the research methodology which has been followed to collect

the data, in addition to discussing the preprocessing strategy followed to clean the

data. Furthermore, we discuss the research approach to follow, including data analysis,

6

feature extraction, annotation, and learning models. Chapter 5 explores the results

of the experiments done to evaluate our framework, with multiple configurations and

settings. Then it digs deeper in asses the results, by using widely used metrics, and

in comparison with similar systems. Thus, situating the research done in the wider

spectrum of research.

Chapter 6 concludes what has been achieved so far in the research and discusses

the suggested planning of future research.

7

Chapter 2

Background

In this chapter, we examine key concepts central to understanding the rest of the

study, such as user review, requirements engineering, requirements elicitation, ma-

chine learning, and text classification.

2.1 Software requirements engineering

Requirements are usually identified in terms of their characteristics and relation to

the product or the process. Fundamentally, not all textual descriptions of a system’s

features or qualities are to be considered requirements. A good requirement has to be

unambiguous, measurable, testable, and achieve a value for the product or process[17].

Following the definition of requirements in this context, requirement engineering

applies system engineering to the processes of ”discovering, developing, tracing, an-

alyzing, qualifying, communicating, and managing requirements”[16], which defines

the system.

8

2.2 Crowd-based requirements engineering

Current trends in the practice of software engineering are continuously challenging

the traditional Software Engineering was realized. Shortening release cycles, adopt-

ing Agile methodologies, and applying Continuous Integration/Continuous Deploy-

ment practices, increase the demand for updating Software Requirements Engineering

processes[48]. For instance, by taking advantage of analyzing data generated and saved

in software systems, Data-Driven Requirements Engineering seeks to both automati-

cally collect requirements and assist other Requirements Engineering processes[35].

Crowd-based requirements engineering is a popular manifestation of data-driven

requirements engineering, as it seeks to analyze data from crowd users in order to

assist requirements engineering [23]. Mobile app reviews and social media content are

among the most used sources to apply this method, though more recent studies have

tried to include other types of sources, such as mobile usage data[10].

2.3 User feedback and automatic text classification

While mobile development shares most of the aspects of other kinds of software de-

velopment, it differs in several key aspects. In mobile development, the software is

usually run on a diverse type of mobile device, which adds complexity to testing, de-

velopment, and maintenance[20]. Additionally, the software is delivered incrementally

in short release cycles[47]. Furthermore, user feedback, which is an essential part of

software development, is obtained mainly from end-users, via app store reviews, blogs,

and social media. Hence, mobile development usually applies agile methodologies, and

its release cycle reflects such dynamics.

Several decisions have to be made during planning a mobile app release[47]. Re-

quirements are gathered, tested, and prioritized, in addition to the release time frame.

9

Afterward, based on the planning phase, coding and maintenance activities are con-

ducted. Then the software is tested based on a variety of testing techniques. After

making sure that the release is ready for publishing, the software gets deployed to app

stores. What precedes is obtaining user feedback. This phase triggers the planning

phase of the next release, and so on.

Ultimately, user feedback in the form of analyzed app reviews improves all steps.

Classifying reviews in terms of reported bugs, suggested features, and enhancements

helps to plan for the next release, specifically on what to work on and in which priority.

Similarly, the information provided on reported bugs, in terms of how it is to be repro-

duced and fixed, enhances development and maintenance phases. Testing is enhanced

further by adding test cases that have only been discovered via user app reviews. All

in all, analyzed user app reviews provide a unique advancement of the mobile software

development cycle.

FiguRe 2.1: Google Play review example

Generally, a mobile app review consists of a textual review, a star rating, reviewer

information, review date, and in some cases other users’ rating of the review, as shown

in figure 2.1. Essentially, the textual content of a review is the main source of require-

ments for developers, though other information provides useful features in analyzing

reviews. Therefore, automatic text classification is proved to be useful in analyzing

reviews and extracting useful information for requirements engineering purposes, as

discussed in chapter 3.

10

2.3.1 Sentimental analysis

What differentiates factual information from opinion is mainly the subjectivity of the

latter. Opinions often describe the experiences of people with various sentiments about

specific subjects. When it comes to digesting opinions, it’s important to realize the

identity of the opinion holder, and the time of them giving the opinion. Additionally,

the sentiment of an opinion is what underlies it of emotions, feelings and evaluations

aspects, and attitudes. A sentiment can be characterized by orientation, intensity, and

type[64].

Sentiment analysis aims to recover the main aspects of opinions, in order to achieve

a specific goal. These aspects include the aspects of the entity the opinion describes,

the time of giving the opinion, the holder of the opinion, and the sentiment. The sen-

timent description has many forms, especially the three main forms of point-rating,

star-rating, and positive, negative, or neutral annotations. Analysis can dig deeper to

try to recover the reasoning behind the opinion or the limit of an opinion to a specific

case or fragment of the entity. [64]

Fundamentally, the process of sentiment analysis includes five main steps:

1. Data retrieval

2. Data extraction and selection

3. Pre-processing

4. Feature Extraction and selection

5. Sentiment Classification

11

2.4 Text classification

The basic approach to classifying text into predefined categories is the keyword-based

approach, which uses pattern matching to compare the text that needs to be classified

with a set of keywords, corresponding to specific categories.

2.5 Arabic text classification

The Arabic language is one of the World’s most spoken languages and is considered

the native language in more than 25 countries. Native speakers often speak their re-

gion’s spoken dialect and use Modern Standard Arabic (MSA) in formal settings such

as the media and scholarship, use classical Arabic in religious and historical settings.

Furthermore, Arabic dialects are also used in writing on social media platforms[59].

Written Arabic is distinguishable by its right-to-left orientation, its non-capitalized

28 letters, diacritical vocalization, and cursive lettering with letters taking multiple

shapes of the script[59].

In addition to Arabic written in the Arabic script, the rise of social media has led to

a trend of writing Arabic in Latin letters or Arabizi as it referred to[63]. In this form,

Arabic letters that are un-mappable to Latin letters are written in the form of numbers

or a combination of various letters, and there is no standard or agreed-upon way of

writing Arabizi.

One of the main stages in performing textual classification in any language is pre-

processing. In Arabic, that is usually includes parsing, text tokenization, stop word

removal, stemming, term weighting, and part-of-speech marking.

Parsing is the process of realizing the text in smaller forms, such as sentences, doc-

uments, or paragraphs. Text tokenization, on the other hand, aims to divide a given

12

text into tokens of small fragments of letters, words, or tokens. In many textual anal-

ysis processes, there are words that are highly frequent and have barely any effect on

realizing the text. These are called stop words and are usually removed, in addition to

other general numbers, words, and symbols. Removing irrelevant prefixes and suffixes

are also applied, and is called stemming, or in another format, lemmatization. Stem-

ming reduces the word into its stem format and is considered more heaving-handed

than reducing a word into its lemma, or basic dictionary format[56].

2.6 Artificial neural networks

Among the commonly used techniques are artificial neural networks. Their name re-

flects the basic idea behind their architecture, which is to mimic learning in biological

organisms, even though the analogy is often criticized as poor[1]. The Basic archi-

tecture of a neural network consists of input nodes, output nodes, and neurons. A

perceptron is the basic building block of neural networks, containing multiple input

nodes, one output node, with a bias neutron.

2.6.1 Deep learning

The concept of deep learning builds up upon artificial neural networks, using the idea

of adding depth to reduce parameter requirements[1]. Thus, deep learning implements

more complex architecture, with hidden layers and stepping functions.

2.6.2 Performance metrics

That concept to be distinguished from performance metrics as used in the study of

Software engineering. In a typical classification scenario, there are multiple measures

to assess the predictive ability of a classifier. However, it is better to understand these

measures by relating them to the concept of confusion matrix, as shown in Table 2.1.

13

This table abstracts the results of a typical binary classification problem. The elements

of a confusion matrix are detailed as follows[53]:

• True Positive(TP) indicates the correct prediction of the presence of the condi-

tion.

• False Positive(FP) is the incorrect prediction of the non-presence of a condition.

• True Negative (TN) indicates the correct prediction of the non-presence of a con-

dition.

• False Negative(FN) happens in the case of an incorrect prediction of the presence

of a condition.

Actual

Predicted Positive Negative
Positive TP FP
Negative FN TN

Table 2.1: Binary classification confusion matrix

Depending on the confusion matrix elements, multiple performance metrics can be

calculated:

Precision

The proportion of the correctly classified positive predictions.

Precision =
TP

TP + FP
(2.1)

14

Recall

The proportion of the correctly classified positive identifications.

Recall =
TP

TP + FN
(2.2)

Accuracy

The ratio of the correctly classified over all classification instances.

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(2.3)

F1 score

The harmonic mean of Recall and Precision.

F 1score =
2 ∗ Precision ∗Recall

(Precision+Recall)
(2.4)

15

Chapter 3

Literature Review

This Chapter details the state of art relating to the topics that this study is interested

in, in addition to the gap of knowledge, that this study tries to fill. To make the survey

clearer, the chapter was divided into sections.

3.1 Mining app store reviews

Mining app store reviews aims to extract useful information from user app reviews via

an automatic process, to be utilized in mobile software development activities. Each re-

viewmay contain multiple sentences, hence the possibility of multiple extricable pieces

of useful information. Other extricable useful information, other than the textual con-

tent, includes the score of the review, its date, its language, developer reply, in addition

to information about the writer. Information about the app, in terms of category and

rating, can also be useful.

As proposed by Harman et al.[26], the app review analysis framework can be di-

vided into three main phases:

1. Raw data extraction from the app store.

16

2. Parsing raw data according to the app’s attributes into features, before parsing

textual description.

3. Extracting features from the textual content of each review, including technical

information, business information, and customer information.

3.2 Automatic text analysis

Both supervised and unsupervised machine learning algorithms have been used to an-

alyze the textual content of app reviews. Supervised machine learning algorithms are

used for purposes of classifying reviews into categories, based on the criteria that the

researcher is interested in. One way of classification is to classify reviews to bugs,

features, and feature status. Another way is to classify reviews to functional and non-

functional requirements, or to several types of non-functional reviews. The training

set is trained on a dataset of reviews that are manually classified. The feature vector is

represented in the bag of words model, implying that words of the training set are rep-

resented into sets of numbers, against their number of occurrences in each review. The

result is a mapping function that predicts the category of a review. Furthermore, in case

a review consists of multiple sentences, each sentence can be categorized separately.

In contrast, unsupervised machine learning algorithms are used mainly to discover

patterns in reviews that are otherwise harder to map manually for the training set.

Thus, reviews are grouped in clusters, each of which targets a specific feature or topic.

This approach could be used to group reviews to represent specific bugs and features.

However, in this approach, human intervention is also inevitable, as clusters have to

be interpreted to be useful for software engineering purposes.

In order to put this study in perspective, we examine both mentioned aspects of

the literature on their own, then we try to explore studies that are more related to our

research.

17

3.2.1 Classification of App reviews

Previous systematic literature reviews analyzed studies are done regarding this topic.

Martin et al.[42], examined studies done on app store analysis for software engineering

and found that there are 45 studies conducted on analyzing app reviews between the

years of 2010-2015. Another study of the literature focused more on the specifics of

mining app reviews[21]. We try here to summarize these findings and focus on a couple

of studies that are the closest to our focus.

Past studies focused on producing classification models, to extract useful informa-

tion about the app. Some studies focused on classifying the reviews to non-functional

requirements and functional requirements, or specific types of each category[34, 30, 60,

36, 2]. This approach specifically targets assisting software requirement engineering

during planning. Others have taken the approach of classifying app reviews to support

requirements engineering during the maintenance phase. Such studies focused on the

classification of categories regarding features and bugs[12, 39, 52, 51].

Regarding the second approach, there are multiple categorizations to classify re-

views. Chen et al.[12] classified reviews into informative and uninformative. Others

adopted different models, including bug reports, feature requests, praise, feature eval-

uation, and others[25, 24, 52, 51], with slightly different variations.

These Studies have offered multiple feature design approaches. Some studies fo-

cused on textual features, while others focused on linguistic and lexical features. Hy-

brid proposals were also tried. Textual features mostly depend on the Bag-of-Words

model[36, 39, 34], Bag-of-characters model[24], and frequency-inverse document fre-

quency (TF-IDF)[52, 51]. In contrast, linguistic features used include part-of-speech[34,

24], constituency parse tree[24], lemmatization[39], among others.

A review could contain multiple sentences and could represent multiple categories.

Several studies considered the review as one sentence, therefore rendering the analysis

18

at the review level[39]. Other studies tried to capture multiple sentiments in a review,

therefore rendering the analysis at the sentence level[12, 52]. Other studies signified

the multi-label aspect of a review, instead of trying to split it[43, 29].

In most cases, studies have used traditional supervised models. That is, to train an

algorithm on a labeled set of app reviews, validate it, and then apply it to automati-

cally classify reviews. Such algorithms include SVM[52, 51], Naive Bayes[39], Decision

tree[39], and Gradient Boosted Regression tree[13]. Recent studies have tried to escape

that paradigm by applying several techniques that have been used on text classification,

namely deep learning. A simple Convolutional Neural Network has been proposed to

ease the process of labeling[57].

3.3 Arabic sentiment analysis

There has been an increasingly significant number of studies of the application of Sen-

timent analysis for the Arabic language, and its related applications. Taking advantage

of the vast literature of sentiment analysis on the English language, studies on Ara-

bic focus on challenges that are witnessed specifically when dealing with the special

nature of Arabic orthography, morphology, and syntax. Other studies try to explore

challenging problems faced in other languages, but try to focus on the special way of

dealing with it in Arabic.

As the field of study of Arabic Sentiment analysis is vast, multiple comprehensive

literature review surveys were conducted in order to analyze it, especially in recent

years. [6] et al. reviewed 118 studies written about topics relating to Arabic Sentiment

Analysis. They discussed the different preprocessing used, the sources of datasets, the

number of documents used in each dataset, the lexicon-based approach or the machine

learning techniques applied, the features extracted, in addition to the Language(i.e.

MSA only, or Dialects, or both). The survey concluded that applying combinations of

19

Deep Learningmodels is more promising than traditional machine learning techniques.

Additionally, the survey concluded that the levels of accuracy that resulted from many

studies were misplaced, as it compared datasets of different domains.

Oueslati et al.[50], has conducted another significant survey of Arabic Sentiment

Analysis. In contrast to [6] et al., they put attention to the main challenges of Arabic

Sentiment analysis, such as Arabic dialects and Arabizi, and how those contrasts with

analyzing MSA only. They further studied the difference between the lexical-based

approach and the corpus-based approach to sentiment analysis. Their findings show

that analyzing Arabic text on the concept level is more suitable than the word level, as

it is more fitting to handle various dialects.

The lexical-based approach to sentiment analysis offers a solid process of opinion

mining. There are multiple notable lexicons that were constructed for Arabic, primarily

either bymapping available English lexicons to Arabic or by applyingMachine learning

techniques. Most of them, however, focus on MSA and neglect dialectal Arabic and

Arabizi, therefore minimizing their effectiveness in classifying informal Arabic text[6].

Notable studies that followed this approach are Badaro et al.[7] and Mahyoub et al.[41].

Other studies opted to apply machine learning techniques by manually labeling a

dataset, and then constructing a machine learning model in order to perform classifica-

tion. The preprocessing phase of machine learning was implemented in the literature

by performing stopword removal, tokenization generic word removal, punctuation re-

moval, stemming from its various manifestations, spell checking, normalization, and

normalizing dialectal text. That is in addition to removing other unwanted textual con-

tent, such as URLs, hashtags, and emoticons[50].

As for applying Machine learning techniques, there were many studies and ap-

proaches. Social media content received the most attention, especially from Twitter.

That means, for most cases, taking into consideration Arab dialects in addition to MSA,

although restricting their focus on one or two Arabic Dialects. Other studies focused

20

on content from news sites and online reviews, and such focusing on MSA alone.

As for what were the appliedMachine learning techniques, there were also a variety

of cases. The three most applied techniques were SVM(Support VectorMachine), KNN(

K-nearest neighbor), and NB(Naive Bayes). Additionally, deep learning classification

was applied in more recent studies[45]. We will discuss one major study that focused

on typical machine learning techniques, and the other two that studied applying deep

learning mechanisms.

In order to achieve better resultswhen analyzing informal Arabic text, Maghfour[40]

et al. proposed an approach of classifying text into MSA and Arab dialects, taking

Moroccan Arabic as a test case, before performing the Opinion mining process. They

collected a dataset of Facebook pages and news. The dataset of 9901 comments was

manually annotated into sentiment categories, in addition to categorization into either

MSA orMoroccan dialect. They compared the performance of one-step sentiment anal-

ysis, meaning without taking into account differentiation of the dialect, and a two-step

classification, classifying MSA comments apart from Morrocan dialect comments. The

features extracted were unigrams and bigrams, in addition to TF and TF-IDF. Further-

more, they experimented with different classifiers, namely NB and SVM. Their results

show that two-step classification yielded better results, but not significantly.

Dahou et al.[15], on the other hand, opted to apply deep learning to analyze the

text of MSA and Arabic dialects. They experimented with classifying multiple exist-

ing datasets of manually annotated Arabic tweets. Their approach applied different

architectures that combined Differential Evaluation(DE) with CNN. Their results were

promising in enhancing the existing state-of-the-art approaches, acknowledging the

added complexity of the classification model.

While sentiment classification received the most attention in the literature, cat-

egorizing text-based other classes received some share of studies. Elnaga et al.[19]

produced two huge annotated Arabic datasets of news posts. The first is called Sanad,

21

which is a single-label annotated corpus, and Nadia, a multiple-label annotated corpus.

The study experimented with nine deep learning architectures, in addition to investi-

gating the use of the word2vec word embeddings model. The experiments yielded very

good results for the single-label corpus, and less so for the multi-label corpus.

More recently, and during the final phase of this research, a couple of studies have

been published on the topic ofminingArabic App Reviews. Chader et al.[11] focused on

sentiment analysis of 50000 Google Play app reviews, both by lexical and SVM as clas-

sification techniques. The reviews contained MSA reviews, Algerian-dialect reviews,

and french reviews. In the results, the lexical method outperformed machine learning,

with 80% over 75%, respectively.

On the other hand, Qutaiba[44] collected 10000 Arabic mobile app reviews, be-

longing to 5 applications only. Then, the Arabic adaptation of the BERT deep learning

technique was utilized to classify app reviews into several categorizations, in order to

assess software engineering purposes. The results of the categories yielded an accuracy

of 95%.

3.4 Highlight the gap of knowledge

To our knowledge, there are very limited studies on mining Arabic mobile app reviews

for facilitating software engineering activities. This study tries to fill that gap. Further-

more, earlier studies on applying deep learning for Arabic Sentiment analysis suggest

encouraging results when compared to traditional machine learning techniques. There-

fore, further study is needed to achieve better results with minimum complexity.

22

Chapter 4

Research Methodology

4.1 Proposed system overview

In order to achieve the objectives of this thesis and build a system that can identify

some of the software requirements for the user reviews of some mobile apps, an anno-

tated sufficient dataset is needed. There are some available datasets with annotations in

different languages and mostly in English, such as that provided by Nadeem Alkailani

in his thesis [5]. To our knowledge, there is no available annotated dataset in Arabic

language. Some of the available datasets focus on one type of software requirements

(functional and non-functional), and some focus on apps in a specific domain, such as

healthcare apps which Nadeem’s data is focusing on. In this thesis, we intend to expand

the study to include mobile apps from different domains and investigate various and a

wider range of software requirements, and most importantly, in the Arabic language.

Therefore, we decided to collect our own dataset and do the annotation manually. The

manual annotation process is described in section 4.2.2. A web application is developed

to assist the annotators, who are experts in the field of software engineering, in label-

ing the selected app reviews. Experts should be chosen from different backgrounds in

23

software engineering development, preferably practitioners. Each expert is asked to

label a subset of the dataset. Each subset has to represent the variation of mobile app

categories.

Some preprocessing steps are applied to the dataset to enhance the reviews. The

pre-processing steps, including text normalization, tokenization, and segmentation, are

described in detail in section 4.3.1.

After data preprocessing, useful representative features are extracted and selected

from the user reviews.

The final step of the proposed system is to use the produced features to build a

machine learning classifier system that can identify the considered software require-

ments from the user review. The machine learning classifiers consist of constructing

variants of deep learning architectures. In order to evaluate the overall system, several

experiments are conducted, iterating through different feature extraction techniques,

different classification algorithms, and the considered software requirement categories.

Additionally, the two algorithms are combined in another experiment, as done in [3]. In

order to experiment with the word embeddings, the system is evaluated with two main

pre-trained word embeddings; word2vec provided by Google and fastetxt provided by

Facebook.

4.2 Dataset

4.2.1 Data Collection

There are two main platforms for collecting Arabic app reviews, namely the Apple app

store and Google Play store. Open source tools to scrap app reviews on both platforms

are available. However, there is a serious limitation when it comes to collecting Arabic

Apple app store reviews, as the platforms allow us to filter reviews by country only.

Even filtering app reviews submitted by users belonging to Arabic-speaking countries

24

yielded too many reviews that are not in Arabic. In contrast, open-source tools to scrap

the Google Play store contain the option of filtering results by language. Nevertheless,

such reviews could be in English written by users with an Arabic Language preference.

Taking that into consideration, we chose to work only on Google Play Store reviews.

We have collected over 13.5 million raw Arabic reviews belonging to 5465 free mo-

bile apps using an open-source Node.js based scraping tool[49]. Apps were selected

from all major application categories, including educational apps, multimedia, medi-

cal, in addition to games. The number of included games is 1733. This study doesn’t

differentiate between games and other types of applications, as the main concern is

requirement elicitation.

The data collected about the apps include their basic identifiers, in addition to cat-

egory, score, description. Similarly, the data collected about the reviews include basic

identifiers, with the score, date, and textual content. To avoid complexity, no data

about developers’ replies were collected, though such data could prove to be beneficial

to software life-cycle analysis.

The process of Google play scraper consists of three phases. The first phase aims to

fetch identifiers of apps that belong to some category in the Google Play store, whether

free or paid, whether gaming or educational. In the second phase, a list of reviews is

obtained in pages. And in the third phase, details of reviews are scrapped based on

a defined number of pages. To construct the dataset, we iterated through all top free

apps of each Google play category, scraping the maximum of 20,000 Arabic reviews of

each. Not all apps had that high number, though some had considerably more.

Out of this corpus, we randomly selected 8,000 reviews for 235 apps, belonging to

all categories with the same weight. After conducting prepossessing on the collected

reviews, many reviews ended up with empty textual content. Additionally, a set of

reviews were found annotated with low confidence, and as such, neglected. Therefore,

we were left with 7,604 reviews for analysis.

25

The collected reviews and app details were stored in a MongoDB database. It was

preceded by importing all the data into CSV files. The choice of the NoSQL database

aims to minimize errors in data collection, as such type of database management sys-

tems allows to store the data objects in semi-structured documents instead of structured

table rows. This feature helps in transforming data structure on the go. Figure 4.1 shows

a sample of app reviews obtained and figure 4.2 shows a sample of app details.

FiguRe 4.1: Representation of sample of app reviews

FiguRe 4.2: Representation of sample of app details

26

4.2.2 Classification taxonomy

Building on the study of Santos et al.[54], we used four main categorizations for the

user reviews. They are as follows:

• Sentiment: the reviews are classified into positive, negative, or irrelevant(i.e.

neutral). This classification corresponds neatly to the categories of praise, com-

plaint, or others, that is witnessed otherwise in the literature[39].

• Intention: relevant reviews shall reflect their specific user intentions, which are

captured in the following categories:

– Informing: the review provides information about the app, or a specific

feature, whether describing some experience with a feature or noticing a

missing feature.

– Requesting: the review reports a bug, unexpected behavior, failure, or crash.

– Reporting: the review requests a new feature, an enhancement for an ex-

isting feature, or seeks piece of information.

– Irrelevant: the review does not reflect any of the above-mentioned cate-

gories or is irrelevant.

• Topic: This categorization reflects the relation between the content of the review

and the app or its content, as follows:

– Product quality: the review is concerned with the app’s main features, or

its quality attributes, such as security and usability.

– Product context: the review is concerned with the content of the app, the

app itself, or specific updates of the app.

– Other product-related: the review is concerned with the price of the app,

its company, or describes a compliance issue.

27

– Irrelevant: the review does not reflect any of the above-mentioned cate-

gories or is irrelevant.

• User perspective: this categorization reflects the relation between the content of

the review and the app or its content, as follows:

– Quality in use: the review expresses an experience resulting from using the

app, or specific features and qualities, whether describing errors or effec-

tiveness, from the perspective of the user.

– User-oriented perception: the review describes the general user experience

using the app, and their emotional reaction, whether satisfaction or frus-

tration.

– Product-oriented perception: the review describes the users’ whole expe-

rience of using the app, its services, and content, in terms of likeability,

likeability, or support.

– Irrelevant: the review does not reflect any of the above-mentioned cate-

gories or is irrelevant.

Different classification groups are meant for different software engineering purposes,

and to assist several requirements engineering processes[54]. Both intention and topic

categorizations assist in requirements elicitation. Topic and intention categorizations

help in prioritizing requirements. The sentiment, user perspective, and topic catego-

rizations combined help in measuring feature and product acceptance.

4.3 System description

Figure 4.3 shows a basic outlook for the design of our proposed system. Any Mobile

app development, with respect to its size or complexity, goes into the steps of release

planning, development, testing, and deployment phases. Then feedback is collected,

28

and the cycle is repeated. In order to assist in this cycle, we propose to build a model to

analyze mobile app reviews. That the mobile app reviews are collected frommobile app

stores, analyzed, and annotated by experts in a specific taxonomy. Then the collected

reviews are preprocessed and normalized and have their features extracted. Then, in

order to establish a classification model, or update an existing one the model is trained

and fine-tuned. After this step is completed, the classification model will be ready to

work.

After the previous steps are completed, the reviews of the specific app under devel-

opment are collected continuously, and classified based on the taxonomy, and fed to

the release planning phase, and as such to other phases.

To narrate an example of using the proposed taxonomy, we can use figure 5.1 as an

example. The reviews are classified by our model with the corresponding classes. In

the release phase, these reviews would be considered as a bug (negative and reporting

classes) in an app’s quality, based on the user report of being affected by the quality

mentioned.

29

User Feedback App Stores

Preprocessing
Reviews

Feature
Extraction(

fasttext/
word2vec)

Training and
Fine-tuning

Classification
Model

Data
Collection and

Annotation

Classification Model

Release Planning

Software
Development

QA Activities

Deployment Phase

Requested Features
and enhancements,

bugs, usage scenarios, prioritization,
 and user perspective report.

FiguRe 4.3: Proposed system design in a simple mobile app release
life-cycle

4.3.1 Data preprocessing

As expected, in any application dealing with highly noisy data, several steps of prepro-

cessing need to be conducted. This process has been done using regular-expressions

scripts written in Python programming language. In the following, we summarize the

main steps of conducting preprocessing.

• Removing Arabic diacritics: While Arabic diacritics are important for the com-

prehension of Arabic words, removing them will simplify.

• Removing single-character words.

30

• Normalizing Arabic Vowels: Replacing final Ya’ with Alif Maqsura, TehMarboota

with Ha’, and Alef Mamdooda or Alef Mahmooza with Alef.

• Removing Non-Arabic letters: It’s not uncommon for Arabic to be transliterated

in Latin letters on social media, or as it is called the Arabic chat alphabet. We

decided to sacrifice this data for the sake of simplicity. Additionally, it’s not rare

for Arabic writers to include words written in European languages to describe

foreign concepts and things. However, such usages usually have very little to do

with the category of the review.

• Removing punctuation marks: By taking this approach, we simplified the review

as one sentence, without the ability to classify each sentence of a review.

• Cleaning redundant spaces: Instead of having multiple spaces between words,

they were replaced with only one space at a place.

• Removing stop words: Arabic stop words are of no value in the process of review

classification. On the contrary, they may lead to less accurate results. Therefore,

it’s better to eliminate them from the process. A list of Arabic stop words was

used[18].

• Normalizing repetition of letters: This step removes redundant repetition of Ara-

bic letters, as shown in Figure 4.4. Such repetition is common in social media

platforms to emphasize the word, by generally repeating its vowels, or less com-

monly, its consonants to display the word at greater length. This phenomenon

could be useful in sentiment analysis. Because this study is concerned with text

classification, normalizing such words is beneficial.

31

FiguRe 4.4: Normalizing repetition of letters

4.4 Feature extraction

To achieve more efficient results, the features were selected based on their performance

with deep learning techniques. Word embeddings have shown good results when used

for text classification with deep learning techniques. The idea is to produce vectors

representing words[31]. The following two word embeddings techniques are used in

our experiments. in both techniques, the provided pre-trained models can be used,

and/or the models can be re-trained on a huge dataset, such as the data collected in this

study.

• Word2Vec: In itself, Word2Vec is an implementation of deep neural networks that

traverses a corpus, generating similarities based on co-occurrences, resulting in

vectors that represent words. However, with similar words semantically with

least distance[31]. The pre-trained models of the word2vec were trained on huge

news data from Google.

• FastText: Similar to Word2Vec, fasttext is a word embedding developed by Face-

book, and based on deep neural networks. The pre-trained model of the fastText

was trained on a huge collection of Facebook posts.

4.4.1 Deep learning classification models

Based on the literature review conducted in this study, we chose two deep learning

models in order to conduct our study, described in the subsequent sections.

32

Convolution Neural Networks (CNN):

CNN is a type of neural network that was originally designed for deep learning com-

puter vision tasks primarily used in image recognition and classification. Now a day

CNN is a state-of-the-art technique in text classification. It takes an input image as a

3-dimensional array based on the image resolution. The height and the width of the

image represented 2 dimensions of the array. While the third dimension is the color of

the pixel (RGB). CNN architecture is mainly composed of three layers, convolutional

layer, pooling layer, and fully connected input layer [37]. Sentences are represented

in N x K vectors representations. The first layer applies convolution operations to the

vectors with a specific filter size. The next layer collects the result of its precedent and

represents it in a long vector. The third step applies dropout operations to the data.

And the final layer classifies the data using softmaxer layer. Figure 4.5 shows all the

layers of CNNs.

FiguRe 4.5: Convolutional neural network architecture, source: [62]

A major step to enhance the performance of this model requires word embeddings,

which result in training an unsupervised machine learning model. To capture the effect

of word embeddings, the experiment should find the results of their existence and their

absence of the CNNs model.

33

In our system, we apply CNN model to identify and classify software requirements

from the user reviews. The reviews are segmented into words. Each word is converted

to vectors using the two feature extraction techniques. Using the Word2Vec and fast-

Text, the reviews are converted into vectors by adopting the semantic meaning.

Long short-term memory (LSTM)

It is considered a type of Recurrent Neural Networks (RNN). The main idea behind it is

handling classification problems on sequential data. That is, it remembers data between

layers. It consists of two gates, an update gate and a forget gate. Figure 4.6 shows the

basic functionality of LSTM.

FiguRe 4.6: Long short-term memory architecture, source: [8]

Bidirectional Long Short-Term Memory (BLSTM)

As an enhancement on LSTM, in order to recognize word-dependency over a long body

of data, BLSTM was designed [28]. So, BLSTM is the process of making any neural

network o have the sequence information in both directions backward (future to past)

34

or forward (past to future). However, in bi-directional, we can make the input flow in

both directions to preserve the future and the past information.

4.5 Evaluation criteria

The precision, f1-score, and recall values are calculated for each categorization, in each

experiment. More details about these performance measures and how they are calcu-

lated are presented in section 2.6.2. In this way, the performance is calculated for each

algorithm by averaging the performance of the algorithm in all categories. Further-

more, it is handy to calculate the average run-time of each algorithm to investigate

their practicality.

35

Chapter 5

Experimental Results and

Evaluation

In this chapter, the manual annotation results are detailed. The conducted experiments

and the evaluation results are presented and discussed. The performance of the pro-

posed models is evaluated based on several metrics such as precision, recall, accuracy,

and F-measure.The performance of the proposed systems is compared with similar sys-

tems and experiments published in related studies, in order to better understand the

results in perspective.

5.1 Manual annotation analysis (RQ1)

Accordingly, 7,604 distinct reviews were manually classified into the classification cat-

egories mentioned above. The starting number of reviews was 8000. However, the re-

views that achieved a low confidence rating, specifically less than 50%, were neglected.

In addition, 100 reviews were annotated by two reviewers, in order to perform the

cross-validation process.

36

We developed a website tool for that purpose, with themain screen shown in Figure

5.1. Six reviewers were chosen for the initial classification, in addition to the author of

this study. They are software engineering practitioners, with 3-12 years of experience

in software development, including five software developers, and one product owner.

They have experience in various types of software products, including Mobile devel-

opment, Desktop App development, and cloud services. A session was conducted to

explain the goal of the experiment, explain the classification tool, and identify the cat-

egories of classification. The classification was conducted on multiple sessions based

on the experts’ needs.

FiguRe 5.1: Manual classification Application

37

Each reviewer was guided to enter their confidence level in their manual annota-

tion, as mentioned above. The share of each reviewer in the annotation process was as

follows:

1. Reviewer 1(Author): 3500 reviews(43.75%).

2. Reviewer 2: 850 reviews(10.62%).

3. Reviewer 3: 800 reviews(10%).

4. Reviewer 4: 950 reviews(11.87%).

5. Reviewer 5: 900 reviews(11.25%).

6. Reviewer 5: 1000 reviews(12.5%).

Table 5.1, shows a sample result of a manually classified review. Figure 5.2, Figure

5.3, Figure 5.4, and Figure 5.5 respectively show the results of the manual annotation

process.

To achieve the maximum number of annotated reviews while making sure the an-

notation process is accurate as much as possible, instead of cross-validating the whole

annotated reviews by more than one expert, a test was done to cross-validate 100 re-

views only. The cross-validation process included anotating the same review by exactly

two reviewers, for each of 100 reviews, covering all reviewers. The rate of the classifi-

cation of a review identically by the two experts by category was as follows:

• Sentiment: 88%

• Intention: 83%

• User Perspective: 73%

• Topic: 77%

38

Review text Intent Topic User Perspective Sentiment
حدث يقول حساب اعمل و افتحه لما
لاحقا!! المحاولة اعاده يرجي ما خطأ

Reporting Product Quality Quality in Use Negative

Table 5.1: Sample of manually annotated review

Figure 5.2 shows the manual annotation bar chart of classifying reviews by Inten-

tion of the review. It’s clear that the plurality of the reviews was not considered irrel-

evant, that is not having useful information relating to either requesting information,

reporting an issue or a bug, or informing about a use case or a comment. However, as

shown, the majority of the sampled dataset contains relevant information.

0 1,000 2,000 3,000 4,000

Requesting
Reporting
Informing
Irrelevant

FiguRe 5.2: Manual Annotation Results of Category Intention

Annotating the sampled reviews based on sentiment produced a different picture.

Figure 5.2 shows that the majority of the reviews are either considered Negative or

Positive by experts.

39

0 1,000 2,000 3,000 4,000

Positive
Negative
Irrelevant

FiguRe 5.3: Manual Annotation Results of Category Sentiment

0 1,000 2,000 3,000 4,000

Quality
Context
Related

Irrelevant

FiguRe 5.4: Manual Annotation Results of Category Topic

Based on expert annotation, the plurality of reviews was classified as Quality re-

lated, when classifying them by Topic, as shown in Figure 5.4. As mentioned in Chapter

4, the quality class expresses the app’s main functionalities and non-functional qual-

ity attributes. Furthermore, in the next ranking, 34% of the sample were considered

irrelevant, as not containing topic information. Notably, the results are less distributed

across the categories.

40

Annotating reviews based on user perspective yielded different results, as shown in

Figure 5.5. The majority of the reviews were considered by experts as relevant, spread-

ing between the categories of Quality in Use, Product-oriented perception, and User-

oriented perception. Only minority reviews were considered irrelevant. The plurality

of the reviews was annotated as ”Quality in Use”, as in describing quality in the appli-

cation, whether satisfaction or dissatisfaction with the app.

0 2,000 4,000 6,000 8,000

Quality in Use
Product-Oriented Perception
User-oriented Perception

Irrelevant

FiguRe 5.5: Manual annotation results of category user perspective

The results of themanual annotation process show clearly that, in all our categories,

the majority of reviews were classified as having relative information for the purposes

of assisting software engineering activities. Whether it is for measuring product accep-

tance, understanding a user usage scenario, user priorities, identifying bugs and issue

reports, or suggesting enhancements, the annotated app reviews showed promising

results.

5.2 Experimental setup

The raw data with the results of manual annotation, as described in section 5.1, was

stored in CSV files containing the textual review data, and the label associated with it,

41

for each experiment taxonomy. The data is then randomly split into three subsets, to

avoid over-fitting:

• Training subset: Constituting 80% of the data, and is used for training the clas-

sifiers. In each epoch of 10 utilized, the classifier is fed the same training data in

order to build the classification model.

• Validation subset: Constituting 10% of the data, and utilized in validating the

performance of the model, and to tune the settings of the classifier.

• Testing subset: Constituting 10% of the dataset, and used for evaluation. The ob-

tained results with the testing data are comparedwith the results of the validation

data, and this shows how concrete the results are.

The preprocessing steps, described in chapter 4, are applied to the text reviews in

the whole dataset, using the text manipulation tools. The resultant text of each review

is tokenized into words and their indexes, using the Keras preprocessing package1,

with a vocabulary size of 45000. Furthermore, the label assigned to each review is

represented as a binary number reflecting its vector value. It is important to note here

that all the experiments were implemented in Python programming language in related

environments, utilizing mainly the tensorflow platform2.

Before digging deeper into the deep learning algorithms and their settings, we will

focus on Word Embeddings that were used in the conducted experiments.

5.2.1 Word embeddings

As described in the previous chapters, word embedding is one of the most popular

representations of words based on pre-trained models with deep learning techniques.

It captures the context of a given word in a text, syntactic and semantic similarity with
1Keras. Keras preprocessing. uRl: https://keras.io/api/preprocessing/ (visited on 11/30/2021).
2Tensorflow. Tensorflow. uRl: https://www.tensorflow.org/ (visited on 11/25/2021).

https://keras.io/api/preprocessing/
https://www.tensorflow.org/

42

other words. Our experiments show that building word embedding models using our

training dataset only gives worse results compared with the pre-trained models, which

are trained on a relatively huge dataset. Therefore, three word embedding models were

used in the presented experiments. One is trained on the training subset of the collected

data through this thesis, and one pre-trained word vector is provided by Google, called

Word2Vec [38], and one is provided by Facebook, called fasttext.

Word2Vec

We tried to look for pre-trained ArabicWord2Vec models, but they were not focused on

Arabic App reviews, and our preliminary tests have shown that they performed worse

than our model. Therefore, their results will not be included below. For the sake of

our experiments, we were able to create a word vector, representing the full length of

our pre-processed Arabic app reviews, that is 13.5 million reviews, using theWord2Vec

representation with CBOW (Continuous Bag of words) Model. In the results, we will

refer to this word embedding as ”Reviews”, which was uploaded online[27].

43

FiguRe 5.6: Visualizing a snapshot of Word Vector around the Word
H̱̱ll(error)

Figure 5.6 shows the Word2Vec vector visualization of the word ”khalal”, which

means failure, with the representations of the synonym words, dialect variation, un-

stemmed words, and writing errors. For instance, ”khatta’” (error) is very related, and

thus closer in representation to ”ʿOttol” (mistake). By this, we can see that theWord2vec

vectors represent the semantics of the words, so the vectors of similar words are close

in the space.

Fasttext

In this case, we used a word-embedding pre-trained model created by the developer

team of fasttext themselves, Facebook’s AI Research (FAIR) lab3. Themodel was trained

on a preprocessed huge crawled Modern Standard Arabic text dataset[22], using the

CBOw method, thus suitable for our experiments. The lab offers another pre-trained
3Piotr Bojanowski and Edouard Grave. Fasttext. uRl: https://research.facebook.com/blog/

2016/08/fasttext/ (visited on 11/30/2021).

https://research.facebook.com/blog/2016/08/fasttext/
https://research.facebook.com/blog/2016/08/fasttext/

44

model on Egyptian Arabic text. However, our preliminary tests have indicated that the

Modern Standard Arabic version consistently performed better. Therefore, the Egyp-

tian Arabic model results will not be included below.

5.2.2 Deep learning classifiers

In each experiment, a single deep learning architecture, or classifier, was used. The

parameters and configurations used for each classifier are as follows:

LSTM

In order to have a baseline systemwith the LSTM,we use the following hyper-parameters

and configurations:

• Embeddings dimension: 300 embeddings. Which limits the state space for re-

construction, resulting in a fair amount of data points, without compromising on

performance, and limiting the number of computations.

• Hidden layers: The number of hidden layers was set to 100.

• Randomization: For each epoch, the training data was randomized, in order to

allow better optimization of the model.

• Activation function: Softmax was used, as it generalizes the Logistic function for

the multi-class space.

• Number of Epochs: 10.

• Embeddings: Instead of generating embeddings from the training data subse-

quently, we opted to use pre-trained word vectors, as the training data is smaller

than to achieve this task without compromising performance.

• Loss function: Our implementation used Categorical Cross-Entropy function, in

order to measure the performance of the model during the training phase. This

45

loss function is the best fit for multi-class classification, as it measures the differ-

ence in the distribution of the multi-class predicted, related to the model perfor-

mance.

• Optimizer: In this case, the Root Mean Squared Propagation was used.

• Layer weights initialization: Random.

• Layer Weight Regularization: Apply penalty to a layer’s kernel weight.

BLSTM

In a similar fashion to the case of the LTSM, the baseline BLSTM configurations were

as follows:

• Embeddings dimension: 300.

• Hidden layers: 100.

• Randomization: For each epoch, the training data was randomized, in order to

allow better optimization of the model.

• Activation function: Softmax.

• Number of Epochs: 10.

• Embeddings: pre-trained.

• Loss function: Categorical Cross-Entropy function.

• Optimizer: the Root Mean Squared Propagation.

• Layer weights initialization: Random.

• Layer Weight Regularization: Apply penalty to a layer’s kernel weight.

46

CNN

CNN differs from the other classifiers, and its parameters are as follows:

• Embeddings dimension: 300.

• Hidden layers: 100.

• Randomization: For each epoch, the training data was randomized, in order to

allow better optimization of the model.

• Activation function: Rectified Linear Unit for Hidden layers, and Softmax for

non-hidden layers.

• Number of Epochs: 10.

• Embeddings: pre-trained.

• Loss function: Categorical Cross-Entropy function.

• Optimizer: the Root Mean Squared Propagation.

• Convolutional Model: The convolutional model of Kim Yoon was adopted[33]

as a reference, as it was designed for text classification. However, setting the

parameters as follows:

– Kernel sizes: 3, 4, 5.

– Number of filters: 10.

– Dropout rate: 0.5.

– Weight regularization (L2): 3.

47

5.2.3 Model performance metrics

The performance metrics to evaluate the performance of the model during training,

testing, and validation were as outlined in Subsection 2.6.2, Precision, Recall, and F1-

score.

5.3 Experiments

In this section, we present the results of the conducted experiments based on the var-

ious approaches discussed in chapter 4. That includes experimenting with different

deep learning classifiers, different word embeddings configurations, and fine-tuning

parameters for each classifier. In order to clearly display the results, we divided the

experiments based on their concerned taxonomy. In what follows, the results of the

classifications of app reviews are displayed, namely by topic, sentiment, intent, and

user perspective.

5.3.1 Experiments set 1: classifications reviews by intention classes

In this set of experiments, the proposed methodology is applied to annotated reviews,

with considering only the labels with respect to the user intention. That means the

four subcategories (informing, reporting, requesting, and irrelevant) of the intention

are used as classes. The results of classifying the reviews based on intention classes are

shown in table 5.2. Remarkably, the LSTM combined with the fasttext word embed-

ding outperformed the other combinations of classifiers and word embeddings, with

an 82.68% F1-score. However, CNN showed acceptable results combined with the Ara-

bic fasttext word embeddings.

48

Taxonomy Intention

Classifier LSTM CNN BLSTM

Model Reviews MSA Reviews MSA Reviews MSA

Word Vector Word2Vec fasttext Word2Vec fasttext Word2Vec fasttext

Recall 30.50% 75.21% 40.81% 55.07% 44.17% 76.93%

Precision 70.85% 91.79% 93.33% 94.77% 75.73% 84.23%

F1-score 42.65% 82.68% 57.55% 69.66% 55.79% 80.41%

Table 5.2: System performance results of intention classification

5.3.2 Experiments set 2: classifying reviews by sentiment classes

In this set of experiments, the sentimental labels, i.e. positive, negative, irrelevant, are

considered as classes. The case of classifying reviews by sentiment classes achieved

similar results as before, as shown in table 5.3. The combination of LSTM and the

fasttext word vector achieved the best results, with 79.17% of F1-score. Also notable in

this case is that the Word2Vec word vector achieved low recall performance, in almost

every case. The precision results when using Word2Vec achieved considerably higher

rates than recall.

Taxonomy Sentiment

Classifier LSTM CNN BLSTM

Model Reviews MSA Reviews MSA Reviews MSA

Word Vector Word2Vec fasttext Word2Vec fasttext Word2Vec fasttext

Recall 46.08% 76.00% 48.67% 65.31% 41.44% 68.00%

Precision 63.22% 82.61% 96.24% 88.28% 55.33% 74.73%

F1-score 53.31% 79.17% 64.65% 75.07% 47.39% 71.20%

Table 5.3: System performance results of sentiment classification

49

5.3.3 Experiments set 3: classifying reviews by topic classes

In the third set of experiments, the labels according to topic classifications, i.e. prod-

uct quality, product context, other-product related, and irrelevant, are considered as

classes. Table 5.4 shows the results of classifying reviews based on their topic classes.

Similar to the results of previous categories, the combination of LSTM and fasttext

MSA word vector achieved the best results, in this case of all performance measures. It

achieved 85.02% F1-score, 87.14% precision, and 82.99% recall. The difference in perfor-

mance in this category between classifiers is starker than in previous categories, and

in this case, BLSTM achieves better results than CNN, with 78.09% F1-score.

Taxonomy Topic

Classifier LSTM CNN BLSM

Model Reviews MSA Reviews MSA Reviews MSA

Word Vector Word2Vec fasttext Word2Vec fasttext Word2Vec fasttext

Recall 46.85% 82.99% 62.45% 71.55% 48.22% 74.62%

Precision 72.28% 87.14% 78.01% 84.50% 75.40% 81.89%

F1-Score 56.85% 85.02% 69.37% 77.49% 58.82% 78.09%

Table 5.4: System performance results of topic classification

5.3.4 Experiments set 4: classifying reviews by user perspective classes

The results of classifying reviews by user perspective sub-classes, i.e. quality in use,

user-oriented perception, product-oriented perception, and irrelevant, are shown in

table 5.5. The results reflect some agreement with previous results, but also some dif-

ferences. The combination of BLSTM with fasttext word vector achieved the best per-

formance in this case, with F1-score of 69.83%. The combination of LSTM and fasttext

word embedding achieved comparable results, with 66.03% F1-score. However, using

CNN with Word2Vec, achieved the maximum precision score of 89.05%. That reflects

50

a trend in some of our experiments, of classifiers achieving high precision, albeit low

recall results. This observation will be discussed further in the following section.

Taxonomy User Perspective

Classifier LSTM CNN BLSTM

Model Reviews MSA Reviews MSA Reviews MSA

Word Vector Word2Vec fasttext Word2Vec fasttext Word2Vec fasttext

Recall 51.11% 65.19% 49.68% 31.47% 33.70% 65.19%

Precision 60.04% 66.88% 89.05% 85.38% 54.48% 75.18%

F1-score 55.21% 66.03% 66.17% 47.33% 41.64% 69.83%

Table 5.5: System performance results of user perspective classifica-
tion

5.4 Discussion (RQ2) & (RQ3)

In Section 5.1, the manual annotation process was discussed in detail. The output of

which was fed to the corresponding experiments. In Section 5.3, we detailed the results

of the experiments that were conducted. The result represented training and testing

a classification based on multiple classifiers(CNN, LSTM, and BLSTM), and multiple

feature extraction algorithms, or in this word embedding(fasttext and Word2Vec). The

best results in each category, closely matched or exceeded the state-of-art systems of

Arabic multi-class text classification. The model generated out of each experiment can

be used further to build a production system, capable of classifying app reviews, and

integrated into a mobile app development life-cycle.

Based on the taxonomy we followed, or in other words, based on the categories and

classes we used, mobile app reviews get fed to the requirements engineering activities.

The top activity to be assisted in this case is requirement elicitation. Reviews classified

based on sentiment indicate if the review is positive or negative, or simply neither.

In the case that the user review is reporting a usage scenario, the sentiment is to be

51

Intention Topic Sentiment User Perspective
Informing Product quality Positive Quality in use The review informs a

use case of quality at-
tribute

Requesting Product context Negative User-oriented per-
ception

The review describes
a negative feeling
about the app con-
tent or updates,
requesting help

Irrelevant Irrelevant Positive Irrelevant The review is irrele-
vant for software en-
gineering uses

Requesting Product quality Positive Quality in use The review is request-
ing a new feature or
enhancement to
existing features or
quality attributes.

Reporting Product quality Negative Quality in use The review reports a
bug in a feature or
quality attribute, neg-
atively affecting the
user experience.

Table 5.6: Example of how to interpret reviews based on taxonomy
values in the context of Requirements Engineering

expected as non-negative. In the case that the user review is reporting a bug or an issue,

the sentiment is expected to be negative. However, if the review is requesting (intention

is classified as requesting), and the sentiment is classified as positive, then this indicates

that the user intends to request a new feature or an enhancement. Furthermore, The

User perspective category indicates whether the user review is expressing an opinion

about product quality, user satisfaction, or frustration, or whether the user is a non-

quality attribute of the app. As for the topic category, the classes express either an

opinion about a quality attribute, update, or general comments, or an opinion about

non-quality issues, such as price or license. Irrelevant in all categories indicate that

a review doesn’t tell anything beneficial for software engineering for the respective

category. However, this interpretation of taxonomy, as shown in Figure 5.6, isn’t to be

52

considered a limitation on other interpretations, based on the specific application of

the solution.

The results of the experiments in section 5 show clearly that the choice of word

embeddings, thus feature extraction, is a significant factor in the performance of the

classification model. Generally speaking, the fasttext pre-trained dataset provided by

the fasttext project by Facebook achieved higher recall, and as a result, a higher F1score

than the Word2Vec model generated in this study. The Result in many instances is a

high-precision low-recall situation. The fasttext differs from Word2Vec by utilizing

n-gram representations, as opposed to only word representations. The great differ-

ence in numbers, however, should not be only attributed to the difference in the al-

gorithm. Because the Word2Vec word embedding was trained on a large dataset of

app reviews, they contain very noisy data, with multi-dialect syntax, but also mis-

spelling, non-normalized instances, and user errors. Figure 5.6 shows an example of

the phenomenon. That is in stark difference with the fasttext pre-trained model, which

is trained mostly on crawled data from the Arabic Wikipedia and other sites, mostly

containing MSA language, with expectedly fewer writing errors, and thus more nor-

malizable.

The stark difference in numbers between using various word vectors is less ob-

servable when using different deep learning classifiers. Even though LSTM, especially

combined with fasttext, has achieved better F1-score performance results in three out of

the used categories, namely topic, intention, and sentiment, other classifiers were close

enough. For instance, in the case of classifying by intention, using fasttext word vec-

tor, BLSTM achieved 80.41% F1-score and LTSM achieved 82.68%, with BLSTM achiev-

ing better recall, but lower precision. BLSTM, combined with fasttext word vector,

achieved a better F1-score, with 69.83%, but LSTM was not far behind with 66.03%.

There were in this case some instances of high precision-low recall situation, such as

when using the combination of CNN and fasttext word vector, in classifying reviews

53

by intention. The F1-score of 69.66% is achieved in this case, but with the high precision

of 94.77%. To improve the recall of this model, a larger annotated dataset has to be used

for training.

In comparison with the literature, the performance of the best classification models

achieved in this study is quite comparable to the performance of the use of the same

classifiers in classifying highly noisy Arabic text, specifically social media content[45].

However, it is noticeable that the task formost of the literature on text classificationwas

sentiment analysis. From among the best results, Nassif et al. [46] tested both CNN,

LSTM, and other hybrid deep learning architectures on Arabic Tweets to achieve the

task of sentiment analysis. The best F1-score results for LSTM and CNN were 83.54%

and 83.11% respectively. Another case is Alkhatib et al.[4], in which applying text

classification on Arabic tweets using CNN achieved F1-score of 82.6%.

5.5 Threats to Validity

The experiments and analysis presented in this chapter are subject to several types of

threats of validity, namely threats to internal validity, external validity, and construct

validity.

5.5.1 Threats to internal validity

There are several conditions and presumptions in our experiments that could lead to

limiting the validity of our results. During the manual annotation phase, the research

was dependent on experts to annotate the textual reviews with corresponding classes

based on the taxonomy of each experiment. The annotators have a wide range of ex-

pertise, interest in the experiment, confidence in their choices, and are probably biased

in their approach to annotation. To mitigate this threat, we added a user confidence

54

parameter for each annotation, in order to measure the experts’ confidence in the pro-

cess and then neglect annotations with low confidence. Furthermore, a sample of 100

reviews was cross-annotated by multiple experts, in order to make sure that the dis-

crepancy between experts is minimum, and the individual bias is not a significant fac-

tor. The experiment was also preceded by a group training session, to make sure the

experts understood the process and the taxonomy provided. Last but not least, the ex-

perts took the time they needed to complete the task, to mitigate the effects of boredom

and apathy in the process.

5.5.2 Threats to external validity

The ability to generalize the research outcome, given the utilized dataset and the ex-

perimental settings, is limited by many factors. The dataset collected and annotated

was crawled from the Google app store. Taking into consideration that there are other

mobile stores, we tried to mitigate this effect by collecting reviews from several thou-

sand apps and games, under a wide range of categories, to ensure the results could be

generalizable. Furthermore, the sample for training and testing was selected to reflect

this diversity and to minimize data bias.

5.5.3 Threats to construct validity

Construct validity is concerned with how valid the performance measures of the exper-

iments are. To mitigate such threats, we used the widely used performance measures

in the research (precision, recall, and F1-score, and which are less susceptible to data or

user bias.

55

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Crowd-based requirements engineering presents many opportunities for app devel-

opers to take advantage of the wealth of data provided by users, for use in software

engineering, and specifically in requirements engineering. In this thesis, we proposed

a framework to classify app reviews in Arabic, by closely exploring the vast literature

on the topic, and conducting the data collection and preprocessing phases, in order to

complete the needed experimentation, testing, and evaluation needed.

We have gathered 13.5 million rawArabic app reviews for the purpose of construct-

ing the classification model. Five hundred out of them have been sampled randomly.

Additionally, with the help of six experts in various fields related to software engineer-

ing, the reviews were annotated according to the taxonomy of our framework. After

that, the reviews were preprocessed and prepared for the experiment by extracting the

features using Word2Vec and fastText techniques.

Various configurations of deep neural networks, namely, CNN, LSTM, and BLSTM,

were used to classify the app reviews into the consideredmain and sub-categories of the

56

software requirement from the Arabic reviews. The sentimental analysis results show

that the LSTM classifier with the fasttext word embeddings gives the best F1-score,

79.17%. However, the BLSTM classifier with the fastText embeddings outperforms the

other classifiers, with F1-score of 69.83%, when used for identifying the sub-categories

of the user perspective main category.

The F1-score of classifying reviews by intention and topics categories with the

LSTM and using fastText embeddings, is 82.68% and 85,02%, respectively. These re-

sults outperform the other configurations of the classifiers and word embeddings.

6.2 Future work

There are many directions for extending this study. For example, different types of

classes related to software requirements can be investigated. The word embedding

models can be re-trained or tuned on the training data and then compared with the pre-

trained models. More investigation of the neural networks configurations and settings

can be studied in future work. Moreover, the effect of the data size on the system

performance can be also investigated. Combining different classifiers with different

settings together to identify the software requirements is also interesting for future

work.

57

Bibliography

[1] Charu C Aggarwal et al. Neural networks and deep learning. Springer, 2018.

[2] Nadeem Al Kilani, Rami Tailakh, and Abualsoud Hanani. “Automatic Classifi-

cation of Apps Reviews for Requirement Engineering: Exploring the Customers

Need from Healthcare Applications”. In: 2019 Sixth International Conference on

Social Networks Analysis, Management and Security (SNAMS). IEEE. 2019, pp. 541–

548.

[3] Marwan Al Omari et al. “Hybrid CNNs-LSTM Deep Analyzer for Arabic Opin-

ion Mining”. In: 2019 Sixth International Conference on Social Networks Analysis,

Management and Security (SNAMS). IEEE. 2019, pp. 364–368.

[4] Manar AlKhatib et al. “A sentiment reporting framework for major city events:

Case study on the China-United States trade war”. In: Journal of Cleaner Pro-

duction 264 (Aug. 2020), p. 121426. issn: 09596526. doi: 10.1016/j.jclepro.

2020.121426. uRl: https://linkinghub.elsevier.com/retrieve/pii/

S0959652620314736.

[5] Nadeem AlKilani. “Automatic Classification of Apps Reviews for Requirement

Engineering (ExploringTheCustomer’s Need fromTheHealthcareApplications)”.

MA thesis. 2019.

[6] “Arabic Sentiment Analysis: A Systematic Literature Review”. In: Applied Com-

putational Intelligence and Soft Computing 2020 (2020). issn: 16879732.

https://doi.org/10.1016/j.jclepro.2020.121426
https://doi.org/10.1016/j.jclepro.2020.121426
https://linkinghub.elsevier.com/retrieve/pii/S0959652620314736
https://linkinghub.elsevier.com/retrieve/pii/S0959652620314736

58

[7] Gilbert Badaro et al. “A large scale Arabic sentiment lexicon for Arabic opinion

mining”. In: Proceedings of the EMNLP 2014 workshop on arabic natural language

processing (ANLP). 2014, pp. 165–173.

[8] Anurag Bhardwaj,Wei Di, and JianingWei.Deep Learning Essentials: Your hands-

on guide to the fundamentals of deep learning and neural network modeling. Packt

Publishing Ltd, 2018.

[9] Piotr Bojanowski and EdouardGrave. Fasttext. uRl: https://research.facebook.

com/blog/2016/08/fasttext/ (visited on 11/30/2021).

[10] Hong Cao and Miao Lin. “Mining smartphone data for app usage prediction

and recommendations: A survey”. In: Pervasive and Mobile Computing 37 (2017),

pp. 1–22.

[11] Asma Chader, Leila Hamdad, and Abdesselam Belkhiri. “Sentiment Analysis in

Google Play Store: Algerian Reviews Case”. In: Modelling and Implementation

of Complex Systems. 2021, pp. 107–121. doi: 10.1007/978- 3- 030- 58861-

8_8. uRl: http://link.springer.com/10.1007/978- 3- 030- 58861-

8%7B%5C_%7D8.

[12] Ning Chen et al. “AR-miner: Mining informative reviews for developers from

mobile app marketplace”. In: Proceedings - International Conference on Software

Engineering. 2014.

[13] Adelina Ciurumelea et al. “Analyzing reviews and code of mobile apps for better

release planning”. In: 2017 IEEE 24th International Conference on Software Analy-

sis, Evolution and Reengineering (SANER). IEEE. 2017, pp. 91–102.

[14] J. Clement. Number of apps available in leading app stores as of 1st quarter 2020.

2020. uRl: https://www.statista.com/statistics/276623/number-of-

apps-available-in-leading-app-stores (visited on 08/20/2020).

https://research.facebook.com/blog/2016/08/fasttext/
https://research.facebook.com/blog/2016/08/fasttext/
https://doi.org/10.1007/978-3-030-58861-8_8
https://doi.org/10.1007/978-3-030-58861-8_8
http://link.springer.com/10.1007/978-3-030-58861-8%7B%5C_%7D8
http://link.springer.com/10.1007/978-3-030-58861-8%7B%5C_%7D8
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores

59

[15] Abdelghani Dahou et al. “Arabic Sentiment Classification Using Convolutional

Neural Network and Differential Evolution Algorithm”. In: Computational In-

telligence and Neuroscience 2019 (2019). issn: 16875273. doi: 10.1155/2019/

2537689.

[16] Jeremy Dick, Elizabeth Hull, and Ken Jackson. Requirements Engineering. Vol. 42.

4. Cham: Springer International Publishing, 2017, p. 9. uRl: http : / / link .

springer.com/10.1007/978-3-319-61073-3.

[17] JeremyDick, ElizabethHull, andKen Jackson. Requirements engineering. Springer,

2017.

[18] Rehab M. Duwairi. “Sentiment analysis for dialectical Arabic”. In: 2015 6th In-

ternational Conference on Information and Communication Systems, ICICS 2015.

2015.

[19] Ashraf Elnagar, Ridhwan Al-Debsi, and Omar Einea. “Arabic text classification

using deep learning models”. In: Information Processing and Management 57.1

(2020), p. 102121. issn: 03064573. uRl: https://doi.org/10.1016/j.ipm.

2019.102121.

[20] Rita Francese et al. “Mobile app development and management: results from a

qualitative investigation”. In: 2017 IEEE/ACM 4th International Conference on Mo-

bile Software Engineering and Systems (MOBILESoft). IEEE. 2017, pp. 133–143.

[21] Necmiye Genc-Nayebi and Alain Abran. “A systematic literature review: Opin-

ion mining studies from mobile app store user reviews”. In: Journal of Systems

and Software 125 (2017), pp. 207–219.

[22] Edouard Grave et al. “Learning Word Vectors for 157 Languages”. In: Proceed-

ings of the International Conference on Language Resources and Evaluation (LREC

2018). 2018.

https://doi.org/10.1155/2019/2537689
https://doi.org/10.1155/2019/2537689
http://link.springer.com/10.1007/978-3-319-61073-3
http://link.springer.com/10.1007/978-3-319-61073-3
https://doi.org/10.1016/j.ipm.2019.102121
https://doi.org/10.1016/j.ipm.2019.102121

60

[23] Eduard C Groen, Joerg Doerr, and Sebastian Adam. “Towards crowd-based re-

quirements engineering a research preview”. In: International Working Confer-

ence on Requirements Engineering: Foundation for SoftwareQuality. Springer. 2015,

pp. 247–253.

[24] X. Gu and S. Kim. “”What Parts of Your Apps are Loved by Users?” (T)”. In:

2015 30th IEEE/ACM International Conference on Automated Software Engineering

(ASE). 2015, pp. 760–770.

[25] Emitza Guzman et al. “User feedback in the app store”. In: Proceedings of the 40th

International Conference on Software Engineering Software Engineering in Society

- ICSE-SEIS ’18. August. ACM Press, 2018, pp. 13–22.

[26] Mark Harman, Yue Jia, and Yuanyuan Zhang. “App store mining and analysis:

MSR for app stores”. In: IEEE International Working Conference on Mining Soft-

ware Repositories (2012), pp. 108–111.

[27] Alaa Isaac. Arabic App Reviews Word2Vec Word Embeddings. uRl: https://www.

kaggle.com/aiaarisaac/arabic-app-reviews-w2v.

[28] Auliya Rahman Isnain, Agus Sihabuddin, and Yohanes Suyanto. “Bidirectional

Long Short Term Memory Method and Word2vec Extraction Approach for Hate

Speech Detection”. In: IJCCS (Indonesian Journal of Computing and Cybernetics

Systems) 14.2 (2020), pp. 169–178.

[29] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. “An empirical study of con-

figuration changes and adoption in Android apps”. In: Journal of Systems and

Software 156.July (2019), pp. 164–180.

[30] Nishant Jha and Anas Mahmoud. Mining non-functional requirements from App

store reviews. Vol. 24. 6. Empirical Software Engineering, 2019, pp. 3659–3695.

[31] John D Kelleher. Deep learning. Mit Press, 2019.

https://www.kaggle.com/aiaarisaac/arabic-app-reviews-w2v
https://www.kaggle.com/aiaarisaac/arabic-app-reviews-w2v

61

[32] Keras. Keras preprocessing. uRl: https://keras.io/api/preprocessing/

(visited on 11/30/2021).

[33] YoonKim. “Convolutional Neural Networks for Sentence Classification”. In:CoRR

abs/1408.5882 (2014). arXiv: 1408.5882. uRl: http://arxiv.org/abs/1408.

5882.

[34] Zijad Kurtanovic and Walid Maalej. “Mining User Rationale from Software Re-

views”. In: Proceedings - 2017 IEEE 25th International Requirements Engineering

Conference, RE 2017 (2017), pp. 61–70.

[35] Sachiko Lim, Aron Henriksson, and Jelena Zdravkovic. “Data-Driven Require-

ments Elicitation: A Systematic Literature Review”. In: SN Computer Science 2.1

(2021), pp. 1–35.

[36] Mengmeng Lu and Peng Liang. “Automatic classification of non-functional re-

quirements from augmented app user reviews”. In: Proceedings of the 21st Inter-

national Conference on Evaluation and Assessment in Software Engineering. 2017,

pp. 344–353.

[37] Ashish Kumar Luhach et al. Advanced Informatics for Computing Research: Third

International Conference, ICAICR 2019, Shimla, India, June 15–16, 2019, Revised

Selected Papers, Part I. Springer Nature, Sept. 16, 2019. 492 pp.

[38] LongMa and Yanqing Zhang. “UsingWord2Vec to process big text data”. In: 2015

IEEE International Conference on Big Data (Big Data). IEEE. 2015, pp. 2895–2897.

[39] Walid Maalej and Hadeer Nabil. “Bug report, feature request, or simply praise?

On automatically classifying app reviews”. In: 2015 IEEE 23rd International Re-

quirements Engineering Conference (RE). IEEE, 2015, pp. 116–125.

[40] Mohcine Maghfour and Abdeljalil Elouardighi. “Standard and dialectal Arabic

text classification for sentiment analysis”. In: International Conference on Model

and Data Engineering. Springer. 2018, pp. 282–291.

https://keras.io/api/preprocessing/
https://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882

62

[41] Fawaz HH Mahyoub, Muazzam A Siddiqui, and Mohamed Y Dahab. “Building

an Arabic sentiment lexicon using semi-supervised learning”. In: Journal of King

Saud University-Computer and Information Sciences 26.4 (2014), pp. 417–424.

[42] William Martin et al. “A survey of app store analysis for software engineering”.

In: IEEE Transactions on Software Engineering 43.9 (2017), pp. 817–847.

[43] Stuart McIlroy, Nasir Ali, and Ahmed E. Hassan. “Fresh apps: an empirical study

of frequently-updated mobile apps in the Google play store”. In: Empirical Soft-

ware Engineering 21.3 (2016), pp. 1346–1370.

[44] Qutaiba Mustafa. “Detecting and classifying Software Bugs and Requirements in

Arabic Mobile App Reviews”. MA thesis. Birzeit University, 2021.

[45] Ali Bou Nassif et al. “Deep learning for Arabic subjective sentiment analysis:

Challenges and research opportunities”. In:Applied SoftComputing (2020), p. 106836.

[46] Ali Bou Nassif et al. “Deep learning for Arabic subjective sentiment analysis:

Challenges and research opportunities”. In:Applied Soft Computing 98.December

(2021). issn: 15684946.

[47] Maleknaz Nayebi, Bram Adams, and Guenther Ruhe. “Release Practices for Mo-

bile Apps–What do Users and DevelopersThink?” In: 2016 ieee 23rd international

conference on software analysis, evolution, and reengineering (saner). Vol. 1. IEEE.

2016, pp. 552–562.

[48] Nan Niu et al. “Requirements engineering and continuous deployment”. In: IEEE

software 35.2 (2018), pp. 86–90.

[49] FacundoOlano. google-play-scraper. 2019. uRl: https://github.com/facundoolano/

google-play-scraper (visited on 07/25/2021).

[50] Oumaima Oueslati et al. “A review of sentiment analysis research in Arabic lan-

guage”. In: Future Generation Computer Systems (2020).

https://github.com/facundoolano/google-play-scraper
https://github.com/facundoolano/google-play-scraper

63

[51] Sebastiano Panichella et al. “ARdoc: App reviews development oriented classi-

fier”. In: Proceedings of the ACM SIGSOFT Symposium on the Foundations of Soft-

ware Engineering 13-18-Nove (2016), pp. 1023–1027.

[52] Sebastiano Panichella et al. “How can i improvemy app? Classifying user reviews

for software maintenance and evolution”. In: 2015 IEEE 31st International Confer-

ence on Software Maintenance and Evolution, ICSME 2015 - Proceedings September

(2015), pp. 281–290.

[53] Claude Sammut and Geoffrey IWebb. Encyclopedia of machine learning. Springer

Science & Business Media, 2011.

[54] Rubens Santos, Eduard C Groen, and Karina Villela. “A Taxonomy for User Feed-

back Classifications.” In: REFSQ Workshops. 2019.

[55] Rabab E. Saudy et al. “Use of Arabic Sentiment Analysis for Mobile Applications’

Requirements Evolution: Trends and Challenges”. In: Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineering

- FSE 2016. Vol. 639. 1. ACM Press, 2018, pp. 477–487.

[56] M. Sawalha, E. Atwell, and M. A. M. Abushariah. “SALMA: Standard Arabic Lan-

guage Morphological Analysis”. In: 2013 1st International Conference on Commu-

nications, Signal Processing, and their Applications (ICCSPA). 2013, pp. 1–6.

[57] Faiz Ali Shah, Kairit Sirts, and Dietmar Pfahl. “Simplifying the classification of

app reviews using only lexical features”. In: International Conference on Software

Technologies. Springer. 2018, pp. 173–193.

[58] Tensorflow. Tensorflow. uRl: https : / / www . tensorflow . org/ (visited on

11/25/2021).

[59] Kees Versteegh. Arabic language. Edinburgh University Press, 2014.

https://www.tensorflow.org/

64

[60] Chong Wang et al. “Augmenting App Review with App Changelogs: An Ap-

proach for App Review Classification.” In: SEKE. 2019, pp. 398–512.

[61] Anthony I. Wasserman. “Software engineering issues for mobile application de-

velopment”. In: Proceedings of the FSE/SDP Workshop on the Future of Software

Engineering Research, FoSER 2010 (2010), pp. 397–400.

[62] JonasWinkler andAndreas Vogelsang. “Automatic classification of requirements

based on convolutional neural networks”. In: 2016 IEEE 24th International Re-

quirements Engineering Conference Workshops (REW). IEEE. 2016, pp. 39–45.

[63] Mohammad Ali Yaghan. ““Arabizi”: A contemporary style of Arabic Slang”. In:

Design issues 24.2 (2008), pp. 39–52.

[64] Jun Zhao, Kang Liu, and Liheng Xu. Sentiment analysis: mining opinions, senti-

ments, and emotions. 2016.

	Abstract
	Abstract (in Arabic)
	List of Abbreviations
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Overview and motivation
	Research objectives
	Research questions
	Contribution

	Structure of the thesis

	Background
	Software requirements engineering
	Crowd-based requirements engineering
	User feedback and automatic text classification
	Sentimental analysis

	Text classification
	Arabic text classification
	Artificial neural networks
	Deep learning
	 Performance metrics
	Precision
	Recall
	Accuracy
	F1 score

	Literature Review
	Mining app store reviews
	Automatic text analysis
	Classification of App reviews

	 Arabic sentiment analysis
	Highlight the gap of knowledge

	Research Methodology
	Proposed system overview
	Dataset
	Data Collection
	Classification taxonomy

	System description
	Data preprocessing

	Feature extraction
	Deep learning classification models
	Convolution Neural Networks (CNN):
	Long short-term memory (LSTM)
	Bidirectional Long Short-Term Memory (BLSTM)

	Evaluation criteria

	 Experimental Results and Evaluation
	Manual annotation analysis (RQ1)
	Experimental setup
	Word embeddings
	Word2Vec
	Fasttext

	Deep learning classifiers
	LSTM
	BLSTM
	CNN

	Model performance metrics

	Experiments
	Experiments set 1: classifications reviews by intention classes
	Experiments set 2: classifying reviews by sentiment classes
	Experiments set 3: classifying reviews by topic classes
	Experiments set 4: classifying reviews by user perspective classes

	Discussion (RQ2) & (RQ3)
	Threats to Validity
	Threats to internal validity
	Threats to external validity
	Threats to construct validity

	Conclusion and Future Work
	Conclusion
	Future work

